42 research outputs found

    Fast Optical Beamforming Architectures for Satellite-based Applications

    Get PDF
    Photonic technology o¿ers an alternative implementation for the control of phased array antennas providing large time bandwidth products and low weight, ¿exible feeding networks. Measurements of an optical beamforming network for phased array antennas with fast beam steering operation for space scenarios are presented. Experimental results demonstrate fast beam steering between 4 and 8 GHz without beam squintVidal Rodriguez, B.; Mengual, T.; Martí Sendra, J. (2012). Fast Optical Beamforming Architectures for Satellite-based Applications. Advances in Optical Technologies. 2012:1-5. doi:10.1155/2012/385409S15201

    Gigabit point to multipoint backhaul using Q-band

    Full text link
    © 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.This paper defines a Q-band point to multipoint backhaul architecture including Q-band disruptive technology that provides multi-gigabit capacity in a cost-effective manner as proposed in the EU FP7 SARABAND project. The small-scale field-trial of the network platform providing Gigabit Ethernet communication is also described.The European Commission is gratefully acknowledged for partial funding of the ICT-2011-288267 SARABAND project in the 7th Framework Programme.Vilar Mateo, R.; Martí Sendra, J.; Magne, F. (2014). Gigabit point to multipoint backhaul using Q-band. En European Conference on Networks and Communications Bologna, Italy, June 23/26, 2014. Institute of Electrical and Electronics Engineers (IEEE). 1-2. http://hdl.handle.net/10251/62767S1

    Q-band Point to Multipoint Backhaul Deployment: the SARABAND Case Study

    Full text link
    This paper describes the small scale field trial deployed within the SARABAND project to provide final network performances comparable to fibre optics in a costeffective manner for the 4G small cell backhaul. The performances of the system have been measured, obtaining over 100 Mbps peak capacity and frame error rates compliant with operators’ requirements.The European Commission is gratefully acknowledged for funding the ICT-2011-288267 SARABAND project in the 7th Framework Programme and the H2020-644678 TWEETHER project.Vilar Mateo, R.; Martí Sendra, J.; Ramírez, A.; Bou, J.; Magne, F. (2015). Q-band Point to Multipoint Backhaul Deployment: the SARABAND Case Study. En 2015 European Conference on Networks and Communications (EuCNC). Institute of Electrical and Electronics Engineers (IEEE). 788-789. http://hdl.handle.net/10251/62273S78878

    Point to Multipoint Backhaul Architecture for 3G/4G Networks and Small Cell Deployment

    Full text link
    Demand for mobile broadband services is continually increasing, requiring operators to provide more and more capacity from their radio access networks. LTE and small cells can offer a promising solution to provide almost unlimited coverage and capacity. However, backhaul technologies can be expensive in terms of both CAPEX and OPEX, and none of the traditional solutions provides the necessary combination of capacity and cost-efficiency. This paper defines a Q-band point to multipoint backhaul architecture that provides multi-gigabit capacity in a costeffective manner. Apart from the network architecture, the key nodes comprising the network will be described.The European Commission is gratefully acknowledged for partial funding of the ICT-2011-288267 SARABAND project in the 7th Framework Programme.Vilar Mateo, R.; Martí Sendra, J.; Bosshard, O.; Magne, F.; Lefevre, A. (2013). Point to Multipoint Backhaul Architecture for 3G/4G Networks and Small Cell Deployment. En Antennas and Propagation in Wireless Communications (APWC), 2013 IEEE-APS Topical Conference on. Institute of Electrical and Electronics Engineers (IEEE). 1-4. https://doi.org/10.1109/APWC.2013.6624942S1

    Silicon-based Photonic Ring Resonators for Optical OFDM Demultiplexing

    Full text link
    We propose a compact integrated OOFDM demultiplexer based on silicon-based photonic ring resonators, providing cost-effective solution and low energy consumption. 160-Gb/s OOFDM demultiplexing operation is validated, showing excellent BER performance with error-free operation.Vilar Mateo, R.; Ramos Pascual, F.; Martí Sendra, J. (2012). Silicon-based Photonic Ring Resonators for Optical OFDM Demultiplexing. En Group IV Photonics (GFP), 2012 IEEE 9th International Conference on. Institute of Electrical and Electronics Engineers (IEEE). 108-110. doi:10.1109/GROUP4.2012.6324102S10811

    160-Gb/s Optical OFDM Demultiplexer based on Photonic Ring Resonators

    Full text link
    A novel all-optical OFDM demultiplexer based on integrated photonic ring resonators (RR) is proposed and its performance validated. The proposed optical OFDM demultiplexer overcome the processing speed limits introduced by electronics and is suitable for very large scale integration, providing a compact and cost-effective solution. The performance of this device considering a Silicon-on-Insulator (SOI) platform has been demonstrated by demultiplexing a 160-Gb/s (4- subcarrier x 40-Gb/s) OFDM signal. Simulations results show excellent BER performance with error-free operation for each demultiplexed subchannel.This work was partially supported by FP7-ICT–2011–7–288267 SARABAND project.Vilar Mateo, R.; Ramos Pascual, F.; Martí Sendra, J. (2012). 160-Gb/s Optical OFDM Demultiplexer based on Photonic Ring Resonators. En Networks and Optical Communications (NOC), 2012 17th European Conference on. Institute of Electrical and Electronics Engineers (IEEE). 83-87. https://doi.org/10.1109/NOC.2012.6249919S838

    High-contrast 40 Gb/s operation of a 500 um long silicon carrier-depletion slow wave modulator

    Full text link
    This paper was published in OPTICS LETTERS and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://dx.doi.org/10.1364/OL.37.003504. Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law[EN] In this Letter, we demonstrate a highly efficient, compact, high-contrast and low-loss silicon slow wave modulator based on a traveling-wave Mach¿Zehnder interferometer with two 500 μm long slow wave phase shifters. 40 Gb ∕ s operation with 6.6 dB extinction ratio at quadrature and with an on-chip insertion loss of only 6 dB is shown. These results confirm the benefits of slow light as a means to enhance the performance of silicon modulators based on the plasma dispersion effect.Funding by the European Commission (EC) under project Photonics Electronics Functional Integration on CMOS (HELIOS) (FP7224312) and PROMETEO-2010- 087 R&D Excellency Program are acknowledged. F.Y.G, D.J.T. and G.T.R. acknowledge funding support from the United Kingdom Engineering and Physical Sciences Research Council (EPSRC) under the grant “UK Silicon Photonics”.Brimont, ACJ.; Thomson, DJ.; Gardes, FY.; Fedeli, JM.; Reed, GT.; Martí Sendra, J.; Sanchis Kilders, P. (2012). High-contrast 40 Gb/s operation of a 500 um long silicon carrier-depletion slow wave modulator. Optics Letters. 37(17):3504-3506. https://doi.org/10.1364/OL.37.003504S350435063717Liao, L., Liu, A., Rubin, D., Basak, J., Chetrit, Y., Nguyen, H., … Paniccia, M. (2007). 40 Gbit/s silicon optical modulator for high-speed applications. Electronics Letters, 43(22), 1196. doi:10.1049/el:20072253Gardes, F. Y., Thomson, D. J., Emerson, N. G., & Reed, G. T. (2011). 40 Gb/s silicon photonics modulator for TE and TM polarisations. Optics Express, 19(12), 11804. doi:10.1364/oe.19.011804Thomson, D. J., Gardes, F. Y., Hu, Y., Mashanovich, G., Fournier, M., Grosse, P., … Reed, G. T. (2011). High contrast 40Gbit/s optical modulation in silicon. Optics Express, 19(12), 11507. doi:10.1364/oe.19.011507Brimont, A., Thomson, D. J., Sanchis, P., Herrera, J., Gardes, F. Y., Fedeli, J. M., … Martí, J. (2011). High speed silicon electro-optical modulators enhanced via slow light propagation. Optics Express, 19(21), 20876. doi:10.1364/oe.19.020876Ziebell, M., Marris-Morini, D., Rasigade, G., Fédéli, J.-M., Crozat, P., Cassan, E., … Vivien, L. (2012). 40 Gbit/s low-loss silicon optical modulator based on a pipin diode. Optics Express, 20(10), 10591. doi:10.1364/oe.20.010591Dong, P., Chen, L., & Chen, Y. (2012). High-speed low-voltage single-drive push-pull silicon Mach-Zehnder modulators. Optics Express, 20(6), 6163. doi:10.1364/oe.20.006163Taylor, H. F. (1999). Enhanced electrooptic modulation efficiency utilizing slow-wave optical propagation. Journal of Lightwave Technology, 17(10), 1875-1883. doi:10.1109/50.793770O’Faolain, L., Beggs, D. M., White, T. P., Kampfrath, T., Kuipers, K., & Krauss, T. F. (2010). Compact Optical Switches and Modulators Based on Dispersion Engineered Photonic Crystals. IEEE Photonics Journal, 2(3), 404-414. doi:10.1109/jphot.2010.2047918Brimont, A., Vicente Galán, J., Maria Escalante, J., Martí, J., & Sanchis, P. (2010). Group-index engineering in silicon corrugated waveguides. Optics Letters, 35(16), 2708. doi:10.1364/ol.35.002708Soref, R., & Bennett, B. (1987). Electrooptical effects in silicon. IEEE Journal of Quantum Electronics, 23(1), 123-129. doi:10.1109/jqe.1987.1073206Nguyen, H. C., Sakai, Y., Shinkawa, M., Ishikura, N., & Baba, T. (2011). 10 Gb/s operation of photonic crystal silicon optical modulators. Optics Express, 19(14), 13000. doi:10.1364/oe.19.013000Dong, P., Liao, S., Liang, H., Qian, W., Wang, X., Shafiiha, R., … Asghari, M. (2010). High-speed and compact silicon modulator based on a racetrack resonator with a 1 V drive voltage. Optics Letters, 35(19), 3246. doi:10.1364/ol.35.00324

    Characterisation of on-chip wireless interconnects based on silicon nanoantennas via near-field scanning optical microscopy

    Full text link
    This paper is a postprint of a paper submitted to and accepted for publication in IET Optoelectronics and is subject to Institution of Engineering and Technology Copyright. The copy of record is available at IET Digital Library.[EN] Recently, a novel Photonic-Integrated Circuit (PIC) paradigm based on the use of a new kind of ultra-directive, lowloss, highly efficient and broadband silicon nanoantenna has enabled the first demonstration of an on-chip wireless interconnect, with potential applications in reconfigurable networks and lab-on-a-chip systems. Despite the fact that the far-field properties of these nanoantennas have been widely studied, their near-field behaviour stays unexplored. Here, the authors study this feature through scanning near-field optical microscopy (SNOM). For this purpose, the authors design and characterise an on-chip twoport wireless link using a tailored SNOM. The conducted near-field measurements will be useful to improve the design of these integrated photonic devices with potential impact on a variety of applications, from biosensing to optical communications.Funding support from the Spanish Ministry of Economy and Competiveness under grants TEC2015-63838-C3-1-R OPTONANOSENS (MINECO/FEDER, UE) and TEC2015-73581-JIN PHUTURE (AEI/FEDER, UE), the EU-funded H2020-FET-HPC EXANEST (No. 671553) and the GeneralitatValenciana's PROMETEO grant NANOMET PLUS (PROMETEO II/2014/34) are acknowledged. E.P.-C. acknowledges support from GeneralitatValenciana under Grant APOSTD/2016/025.Díaz-Fernández, FJ.; Pinilla-Cienfuegos, E.; García Meca, C.; Lechago-Buendia, S.; Griol Barres, A.; Martí Sendra, J. (2019). Characterisation of on-chip wireless interconnects based on silicon nanoantennas via near-field scanning optical microscopy. IET Optoelectronics. 13(2):72-76. https://doi.org/10.1049/iet-opt.2018.5071S7276132Kirchain, R., & Kimerling, L. (2007). A roadmap for nanophotonics. Nature Photonics, 1(6), 303-305. doi:10.1038/nphoton.2007.84Zhang, Y., Watts, B., Guo, T., Zhang, Z., Xu, C., & Fang, Q. (2016). Optofluidic Device Based Microflow Cytometers for Particle/Cell Detection: A Review. Micromachines, 7(4), 70. doi:10.3390/mi7040070Redding, B., Liew, S. F., Sarma, R., & Cao, H. (2013). Compact spectrometer based on a disordered photonic chip. Nature Photonics, 7(9), 746-751. doi:10.1038/nphoton.2013.190Fan, X., & White, I. M. (2011). Optofluidic microsystems for chemical and biological analysis. Nature Photonics, 5(10), 591-597. doi:10.1038/nphoton.2011.206Condrat, C., Kalla, P., & Blair, S. (2014). Crossing-Aware Channel Routing for Integrated Optics. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 33(6), 814-825. doi:10.1109/tcad.2014.2317575Brongersma, M. L. (2008). Engineering optical nanoantennas. Nature Photonics, 2(5), 270-272. doi:10.1038/nphoton.2008.60Bellanca, G., Calò, G., Kaplan, A. E., Bassi, P., & Petruzzelli, V. (2017). Integrated Vivaldi plasmonic antenna for wireless on-chip optical communications. Optics Express, 25(14), 16214. doi:10.1364/oe.25.016214Krasnok, A. E., Miroshnichenko, A. E., Belov, P. A., & Kivshar, Y. S. (2012). All-dielectric optical nanoantennas. Optics Express, 20(18), 20599. doi:10.1364/oe.20.020599Krasnok, A. E., Simovski, C. R., Belov, P. A., & Kivshar, Y. S. (2014). Superdirective dielectric nanoantennas. Nanoscale, 6(13), 7354-7361. doi:10.1039/c4nr01231cGarcía-Meca, C., Lechago, S., Brimont, A., Griol, A., Mas, S., Sánchez, L., … Martí, J. (2017). On-chip wireless silicon photonics: from reconfigurable interconnects to lab-on-chip devices. Light: Science & Applications, 6(9), e17053-e17053. doi:10.1038/lsa.2017.53Kosako, T., Kadoya, Y., & Hofmann, H. F. (2010). Directional control of light by a nano-optical Yagi–Uda antenna. Nature Photonics, 4(5), 312-315. doi:10.1038/nphoton.2010.34Dvořák, P., Édes, Z., Kvapil, M., Šamořil, T., Ligmajer, F., Hrtoň, M., … Šikola, T. (2017). Imaging of near-field interference patterns by aperture-type SNOM – influence of illumination wavelength and polarization state. Optics Express, 25(14), 16560. doi:10.1364/oe.25.016560Bazylewski, P., Ezugwu, S., & Fanchini, G. (2017). A Review of Three-Dimensional Scanning Near-Field Optical Microscopy (3D-SNOM) and Its Applications in Nanoscale Light Management. Applied Sciences, 7(10), 973. doi:10.3390/app710097

    High signal-to-noise ratio ultra-compact lab-on-a-chip microflow cytometer enabled by silicon optical antennas

    Full text link
    [EN] We experimentally demonstrate an all-silicon nanoantenna-based micro-optofluidic cytometer showing a combination of high signal-to-noise ratio (SNR) > 14 dB and ultra-compact size. Thanks to the ultra-high directivity of the antennas (>150), which enables a state-of-the-art sub-micron resolution, we are able to avoid the use of the bulky devices typically employed to collimate light on chip (such as lenses or fibers). The nm-scale antenna cross section allows a dramatic reduction of the optical system footprint, from the mm-scale of previous approaches to a few mu m(2), yielding a notable reduction in the fabrication costs. This scheme paves the way to ultra-compact lab-on-a-chip devices that may enable new applications with potential impact on all branches of biological and health science.Funding from grant TEC2015-63838-C3-1-R OPTONANOSENS (MINECO/FEDER, UE) is acknowledged. C. G.-M. acknowledges support from project TEC2015-73581-JIN PHUTURE (AEI/FEDER, UE). This work was also supported by the EU-funded projects FP7-ICT PHOXTROT (No. 318240), the EU-funded H2020-FET-HPC EXANEST (No. 671553) and the Generalitat Valenciana's PROMETEO grant NANOMET PLUS (PROMETEO II/2014/34).Lechago-Buendia, S.; García Meca, C.; Sánchez Losilla, N.; Griol Barres, A.; Martí Sendra, J. (2018). High signal-to-noise ratio ultra-compact lab-on-a-chip microflow cytometer enabled by silicon optical antennas. Optics Express. 26(20):25645-25656. https://doi.org/10.1364/OE.26.02564525645256562620Redding, B., Liew, S. F., Sarma, R., & Cao, H. (2013). Compact spectrometer based on a disordered photonic chip. Nature Photonics, 7(9), 746-751. doi:10.1038/nphoton.2013.190Malinauskas, M., Žukauskas, A., Hasegawa, S., Hayasaki, Y., Mizeikis, V., Buividas, R., & Juodkazis, S. (2016). Ultrafast laser processing of materials: from science to industry. Light: Science & Applications, 5(8), e16133-e16133. doi:10.1038/lsa.2016.133Fan, X., & White, I. M. (2011). Optofluidic microsystems for chemical and biological analysis. Nature Photonics, 5(10), 591-597. doi:10.1038/nphoton.2011.206Zheludev, N. I., & Kivshar, Y. S. (2012). From metamaterials to metadevices. Nature Materials, 11(11), 917-924. doi:10.1038/nmat3431Zhang, Y., Watts, B., Guo, T., Zhang, Z., Xu, C., & Fang, Q. (2016). Optofluidic Device Based Microflow Cytometers for Particle/Cell Detection: A Review. Micromachines, 7(4), 70. doi:10.3390/mi7040070Chen, X., Li, C., & Tsang, H. K. (2011). Device engineering for silicon photonics. NPG Asia Materials, 3(1), 34-40. doi:10.1038/asiamat.2010.194Luka, G., Ahmadi, A., Najjaran, H., Alocilja, E., DeRosa, M., Wolthers, K., … Hoorfar, M. (2015). Microfluidics Integrated Biosensors: A Leading Technology towards Lab-on-a-Chip and Sensing Applications. Sensors, 15(12), 30011-30031. doi:10.3390/s151229783Padgett, M., & Bowman, R. (2011). Tweezers with a twist. Nature Photonics, 5(6), 343-348. doi:10.1038/nphoton.2011.81Yih Shiau. (1976). Dielectric Rod Antennas for Millimeter-Wave Integrated Circuits (Short Papers). IEEE Transactions on Microwave Theory and Techniques, 24(11), 869-872. doi:10.1109/tmtt.1976.1128980Brongersma, M. L. (2008). Engineering optical nanoantennas. Nature Photonics, 2(5), 270-272. doi:10.1038/nphoton.2008.60Alù, A., & Engheta, N. (2010). Wireless at the Nanoscale: Optical Interconnects using Matched Nanoantennas. Physical Review Letters, 104(21). doi:10.1103/physrevlett.104.213902Novotny, L., & van Hulst, N. (2011). Antennas for light. Nature Photonics, 5(2), 83-90. doi:10.1038/nphoton.2010.237Giannini, V., Fernández-Domínguez, A. I., Heck, S. C., & Maier, S. A. (2011). Plasmonic Nanoantennas: Fundamentals and Their Use in Controlling the Radiative Properties of Nanoemitters. Chemical Reviews, 111(6), 3888-3912. doi:10.1021/cr1002672Sun, J., Timurdogan, E., Yaacobi, A., Hosseini, E. S., & Watts, M. R. (2013). Large-scale nanophotonic phased array. Nature, 493(7431), 195-199. doi:10.1038/nature11727Van Acoleyen, K., Rogier, H., & Baets, R. (2010). Two-dimensional optical phased array antenna on silicon-on-Insulator. Optics Express, 18(13), 13655. doi:10.1364/oe.18.013655García-Meca, C., Lechago, S., Brimont, A., Griol, A., Mas, S., Sánchez, L., … Martí, J. (2017). On-chip wireless silicon photonics: from reconfigurable interconnects to lab-on-chip devices. Light: Science & Applications, 6(9), e17053-e17053. doi:10.1038/lsa.2017.53Robinson, J. P., & Roederer, M. (2015). Flow cytometry strikes gold. Science, 350(6262), 739-740. doi:10.1126/science.aad6770Mao, X., Nawaz, A. A., Lin, S.-C. S., Lapsley, M. I., Zhao, Y., McCoy, J. P., … Huang, T. J. (2012). An integrated, multiparametric flow cytometry chip using «microfluidic drifting» based three-dimensional hydrodynamic focusing. Biomicrofluidics, 6(2), 024113. doi:10.1063/1.3701566Huang, N.-T., Zhang, H., Chung, M.-T., Seo, J. H., & Kurabayashi, K. (2014). Recent advancements in optofluidics-based single-cell analysis: optical on-chip cellular manipulation, treatment, and property detection. Lab Chip, 14(7), 1230-1245. doi:10.1039/c3lc51211hPsaltis, D., Quake, S. R., & Yang, C. (2006). Developing optofluidic technology through the fusion of microfluidics and optics. Nature, 442(7101), 381-386. doi:10.1038/nature05060Cheung, K. C., Di Berardino, M., Schade-Kampmann, G., Hebeisen, M., Pierzchalski, A., Bocsi, J., … Tárnok, A. (2010). Microfluidic impedance-based flow cytometry. Cytometry Part A, 77A(7), 648-666. doi:10.1002/cyto.a.20910Cheung, K., Gawad, S., & Renaud, P. (2005). Impedance spectroscopy flow cytometry: On-chip label-free cell differentiation. Cytometry Part A, 65A(2), 124-132. doi:10.1002/cyto.a.20141Xie, X., Cheng, Z., Xu, Y., Liu, R., Li, Q., & Cheng, J. (2017). A sheath-less electric impedance micro-flow cytometry device for rapid label-free cell classification and viability testing. Analytical Methods, 9(7), 1201-1212. doi:10.1039/c6ay03326aBlasi, T., Hennig, H., Summers, H. D., Theis, F. J., Cerveira, J., Patterson, J. O., … Rees, P. (2016). Label-free cell cycle analysis for high-throughput imaging flow cytometry. Nature Communications, 7(1). doi:10.1038/ncomms10256Soref, R. (2006). The Past, Present, and Future of Silicon Photonics. IEEE Journal of Selected Topics in Quantum Electronics, 12(6), 1678-1687. doi:10.1109/jstqe.2006.883151Frankowski, M., Theisen, J., Kummrow, A., Simon, P., Ragusch, H., Bock, N., … Neukammer, J. (2013). Microflow Cytometers with Integrated Hydrodynamic Focusing. Sensors, 13(4), 4674-4693. doi:10.3390/s130404674Barat, D., Spencer, D., Benazzi, G., Mowlem, M. C., & Morgan, H. (2012). Simultaneous high speed optical and impedance analysis of single particles with a microfluidic cytometer. Lab Chip, 12(1), 118-126. doi:10.1039/c1lc20785gTesta, G., Persichetti, G., & Bernini, R. (2014). Micro flow cytometer with self-aligned 3D hydrodynamic focusing. Biomedical Optics Express, 6(1), 54. doi:10.1364/boe.6.000054Etcheverry, S., Faridi, A., Ramachandraiah, H., Kumar, T., Margulis, W., Laurell, F., & Russom, A. (2017). High performance micro-flow cytometer based on optical fibres. Scientific Reports, 7(1). doi:10.1038/s41598-017-05843-7Kosako, T., Kadoya, Y., & Hofmann, H. F. (2010). Directional control of light by a nano-optical Yagi–Uda antenna. Nature Photonics, 4(5), 312-315. doi:10.1038/nphoton.2010.34Taillaert, D., Van Laere, F., Ayre, M., Bogaerts, W., Van Thourhout, D., Bienstman, P., & Baets, R. (2006). Grating Couplers for Coupling between Optical Fibers and Nanophotonic Waveguides. Japanese Journal of Applied Physics, 45(8A), 6071-6077. doi:10.1143/jjap.45.6071Potcoava, M. C., Futia, G. L., Aughenbaugh, J., Schlaepfer, I. R., & Gibson, E. A. (2014). Raman and coherent anti-Stokes Raman scattering microscopy studies of changes in lipid content and composition in hormone-treated breast and prostate cancer cells. Journal of Biomedical Optics, 19(11), 111605. doi:10.1117/1.jbo.19.11.111605Traub, M. C., Longsine, W., & Truskett, V. N. (2016). Advances in Nanoimprint Lithography. Annual Review of Chemical and Biomolecular Engineering, 7(1), 583-604. doi:10.1146/annurev-chembioeng-080615-034635Xu, B.-B., Zhang, Y.-L., Xia, H., Dong, W.-F., Ding, H., & Sun, H.-B. (2013). Fabrication and multifunction integration of microfluidic chips by femtosecond laser direct writing. Lab on a Chip, 13(9), 1677. doi:10.1039/c3lc50160dZucker, R. M., Ortenzio, J. N. R., & Boyes, W. K. (2015). Characterization, detection, and counting of metal nanoparticles using flow cytometry. Cytometry Part A, 89(2), 169-183. doi:10.1002/cyto.a.22793Kowalczyk, B., Lagzi, I., & Grzybowski, B. A. (2011). Nanoseparations: Strategies for size and/or shape-selective purification of nanoparticles. Current Opinion in Colloid & Interface Science, 16(2), 135-148. doi:10.1016/j.cocis.2011.01.00

    Coherent Control of a Plasmonic Nanoantenna Integrated on a Silicon Chip

    Full text link
    [EN] Illuminating a plasmonic nanoantenna by a se of coherent light beams should tremendously modify its scattering, absorption and polarization properties, thus, enabling all-optical dynamic manipulation. However, diffraction inherently makes coherent control of isolated subwavelength-sizecl nanoantennas highly challenging when Uninitiated from free-space. Here, we overcome this limitation by placing the nanoantenna at a subwavelength distance of the output facet of silicon, waveguides that provide monolithically defined paths for multibeam coherent illumination. Inspired by coherent perfect absorption (CPA) concepts, we demonstrate experimentally modulation of the nanoantenna scattering by more than 1 order of magnitude and of the on-chip transmfission by > 50% over a similar to 200 nm bandwidth at telecom wavelengths by changing the phase between two counter-directional coherent guided beams. Moreover, we demonstrate coherent synthesis of polarization of the radiated field by illuminating the nanoantenna from orthogonal waveguides. Our finding paves the way toward coherent manipulation of nanoantennas and all-optical processing without nonlinearities in art integrated platform.All the authors acknowledge support from the Spanish Ministry of Economy and Competiveness (MINECO): A.E.-S. under Grant BES-2015-073146, E.P.-C. under Grant FJCI-2015-27228, F.J.D.-F. under Grant TEC2015-63838-C3-1-R, and A.M. under Grants TEC2014-51902-C2-1-R and TEC2014-61906-EXP.Espinosa-Soria, A.; Pinilla-Cienfuegos, E.; Díaz-Fernández, FJ.; Griol Barres, A.; Martí Sendra, J.; Martínez Abietar, AJ. (2018). Coherent Control of a Plasmonic Nanoantenna Integrated on a Silicon Chip. ACS Photonics. 5(7):2712-2717. https://doi.org/10.1021/acsphotonics.8b00447S271227175
    corecore